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1. INTRODUCTION

Through vision, we derive a rich understanding of what is in the world, where objects
are located, and how they are changing with time. Because we obtain this understand-

ing immediately, effortlessly, and without conscious introspection, we can be deceived into
thinking that vision should therefore be a fairly simple task to perform. The computational

approach to the study of vision inquires directly into the sort of information processing
needed to extract important information from the changing visual image - information
such as the three-dimensional (3-D) structure and movement of objects in the scene, or the

color and texture of object surfaces. An important contribution that computational studies

have made is to show how diffcult -,ision is to perform, and how complex are the processes
needed to perform visual tasks successfully.

Levels of analysis

The development of computers with increasing power and sophistication has often stim-

ulated comparisons between computers and the human brain, especially since computers

have been applied more and more to tasks that were formerly considered uniquely human
capabilities, such as understanding natural language. It is clear, however, that at the level

of their hardware, neurons and computer circuits are very different. We can nevertheless

attempt to describe the processes that take place in these two systems at a level that is es-

sentially independent of this hardware - this is a description of the tasks that they perform.

In much the same way that we can describe the theory of arithmetic independent of the
computing device that carries out the arithmetic operations, we can describe the theory of
vision independent of the hardware that carries it out, whether it be biological or computer

hardware.

This idea of separating the tasks performed by a vision system from the hardware
that carries out these tasks was central to the work of David Marr (1982). Marr argued

that there are at least three different levels at which problems in vision can be described,
which he labelled the computational theory, algorithm, and mechanism. Theoretical issues

include an analysis of the way in which properties of the physical world constrain how
problems in vision are solved. An algorithm is a step-by-step procedure that transforms

one representation of visual information into the next. Finally, the mechanism refers to the

details of how a computation is carried out in neural or computer hardware. These three
levels of analysis are a useful methodological distinction for studying visual processing, but
the distinction between levels such as algorithm and mechanism is often not a sharp one for

the brain.

An aspect of computational studies that distinguishes them from other theoretical ap-

proaches to the study of vision is the notion that an effective way to analyze the compu-
tational strategies used by biological systems to perform complex visual tasks is to build
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computer vision systems that use similar strategies. The synthesis of machine vision sys-

tems allows rigorous testing of whether some strategy that is hypothesized for the biological

system really works at solving an important problem in vision. Building machine vision

systems often uncovers difficult aspects of a problem, and possible solutions, that were not

realized upon first consideration.

Experimental studies from psychology and the neurosciences provide critical insights

into the particular computations that underlie visual processing in biological systems. A

given problem typically can be solved in more than one way; there are different choices for

how properties of the physical world can constrain its solution, and different algorithms,

or procedures, that can be used to carry out the solution. Computer implementations of

possible strategies can show how the overall behavior of the system depends on the choice of

constraints and algorithms, and critical experimental tests can be devised to determine what

choices are made in biological systems. Thus, a fruitful interaction between computational

and experimental approaches can contribute to our understanding of biological vision.

Low level and high level vision

Biological vision begins with measurements of the amount of light reflected from surfaces

in the environment onto the eye. The retinal image provided by the photoreceptors can be

thought of as a large array of continuously changing numbers that represent light intensities.

From this array of light measurements, the visual system does not achieve an understanding

of what is in the scene in a single step. A tenet of computational studies is that vision

proceeds in stages, with each stage producing increasingly more useful descriptions of the

world. The process of vision can be viewed as the construction of a series of representations

of visual information with explicit computation that transforms one representation into the

next.

It is not yet known how biological systems represent visual information, but compu-

tational studies have suggested several representations that are useful in visual processing

(see, for example, Marr, 1982; Ballard and Brown, 1982; Horn, 1986; Fischler and Firschein,

1987). Representations proposed for the early stages of vision first capture information that

can be extracted simply and directly from the initial image, such as the location and de-

scription of significant intensity changes or edges in the image. Subsequent representations

capture the local geometry or three-dimensional shape of visible surfaces in the scene, rep-

resented as the orientation or depth of surfaces at each location in the scene. Many familiar

visual processes, such as the analysis of movement, binocular stereopsis, surface sha" .g,

texture, and color, contribute to the computation of these early visual representations. We

refer to these early stages of vision as low level vision. A main goal of low level visual

processes is to recover properties of the surrounding environment, and the representations

that they deliver can be evaluated on the basis of their validity, that is, whether the results

they deliver are correct and accurate.



3

Later representations for vision capture information necessary to solve complex tasks
such as navigation through the environment, manipulation of objects, and recognition. The
visual processes involved in accomplishing these tasks are often referred to as high level
vision. Although there is no well-defined boundary between low and high level vision, the
distinction is often a useful one. The main difference between low and high level visual pro-
cesses is in the kind of knowledge they use. Low level vision relies on assumptions regarding
the general physical properties of objects, such as continuity and rigidity. High level tasks,
such as recognition, often use some knowledge we have acquired about specific objects, such
as their shape and perhaps the transformations that they may undergo. Additional dis-
tinctions between low and high level vision, and the description of an intermediate domain
between them, are discussed in section 3 of this chapter.

Scope of the chapter

The next section focuses on three problem areas in which there has been substantial
computational work, as well as important interactions between computational work and
experimental studies from psychology and the neurosciences. In particular, we consider tfe
problems of edge detection, binocular stereo and the analysis of visual motion. Overall, re-
search in computational vision spans a wide range of problems that also include the analysis
of texture, color, and the recovery of 3-D shape from image contours and smooth shading.
Most early work explored these problems in isolation, while recent work has emphasized
the integration of multiple visual processes. Reviews of computational work in these areas
can be found in a number of recent books (for example, Brady, 1981; Ballard and Brown,
1982; Marr, 1982; Beck, Hope and Rosenfeld, 1983; Ullman and Richards, 1984; Levine,
1985; Horn, 1986; Pentland, 1986; Brown, 1987; Fischler and Firschein, 1987; Richards and
Ullman, 1987). Section 3 explores problems in intermediate and high level vision, and ad-
dresses two major pr6blems. The first is the extraction of shape properties of figures and
spatial relations among items in the scene. The second is visual object recognition.

2. LOW LEVEL VISION

2.1 Edge Detection

When the image is first captured by the retinal photoreceptors in the eye, it consists
of some 120 million individual pointwise measurements of lignt intensity. A major problem
that arises is how to transform this large and unstructured set of measurements into a more
useful representation, that is, a representation that is more concise and more convenient for
subsequent processing stages.

In the fields of computer vision and image processing, the dominant suggestion has been
to begin the analysis of the incoming image by producing from the intensity array an edge
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representation, using a process called edge detection. Edges in the image are locations where
the light intensity changes significantly from one level to a different one. The main rationale
for using an edge representation as the primary representation is that intensity edges are
usually physically significant: they correspond to object boundaries and to discontinuities
in surface properties, such as spatial orientation or reflectance. The important role of edges
is also supported by the fact that for humans, a line sketch of an image often conveys most
of the essential information, although from the point of view of the underlying intensity
distributions, the line sketch and the image are radically different. Similarly, in experiments
involving pattern recognition by animals (such as the rat, octopus, and goldfish), it has been
noted that figures are usually treated as equivalent to a sketch of their outlines (Sutherland,
1968). Early perceptual studies by Cornsweet and others (see, for example, Cornsweet,
1970) also show that our perception of an image does not directly mimic the initial intensities
registered by the eye, but is strongly influenced by the presence of sharp intensity changes,
or edges. An example of an edge representation obtained from a natural image, using an
edge detection method for computer vision systems proposed by Canny (1986) is shown in
Figure 1.

It should be mentioned that the operation of edge detection is not the only proposal
that has been made concerning the initial representation of the incoming image. A popular
alternative has been a local Fourier (or Gabor) decomposition of the image.' These alter-
native suggestions have not yet played as significant a role in computational vision, and will
not be discussed further here.

In the discussion below we will consider primarily one family of edge detection schemes
that are based on detecting maxima in the rate of change (defined as maxima, or peaks, in
the first derivative or zero-crossings in the second) of the image intensities. The reasons
for concentrating on this group are first, that such schemes have produced high quality
results that have been used successfully in later stages of visual processing in computer
vision systems, and second, interesting possible connections have been proposed between
this scheme and edge detection by the human visual system. For reviews of various edge
detection techniques, see, for example, Davis (1975), Fram and Deutsch (1975), Pratt (1978),
Ballard and Brown (1982), Torre and Poggio (1986), Fischler and Firschein (1987), and
Hildreth (1987).

'The description of the image using Fourier components is based on the mathematical notion

that any periodic function can be expressed as the sum of more elementary functions (sines and
cosines), each multiplied by an appropriate scaling factor (see, for example, Bracewell, 1978).
The set of scaling factors (called the Fourier coefficients) can serve to characterize the function
uniquely. The Fourier approach to early vision suggests that the incoming image is divided into
regions, and for each region the visual system constructs a representation that resembles a Fourier
decomposition.
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Figure 1. Edge detection. (a) Original image. (b) Edge representation of the same image.

produced by the Canny edge detection algorithm (Canny, 1986).



Differentiation and smoothing

To produce an edge representation of the image, one needs a more precise definition
of what is meant by "significant" intensity changes. One definition that has been proposed
is to identify edges as locations in the image where the (directional) derivative of intensity

reaches a local maximum in its absolute value. It can be shown that, under quite general
conditions, when a signal passes through an optical system, step edges in the incoming inten-
sity distribution (before the optics) will give rise to maxima in the first directional derivative
of image intensity (after the optics). Locating derivative maxima therefore appears to be a

reasonable step toward identifying sharp edges.

The differentiation of a signal, however, raises certain technical difficulties, because
this operation enhances considerably the high frequency components of the signal. Because
images often contain high frequency noise, the noise is enhanced by differentiation.' To
overcome this problem, the differentiation of a signal is usually preceded' by a smoothing
operation that removes the noisy high frequency components. It has been shown that
optimal results can be obtained by using a smoothing function that has a Gaussian, or
close to a Gaussian shape (Shanmugam, Dickey and Green, 1979; Marr and Hildreth, 1980;
Koenderink, 1984; Babaud et al., 1986; Canny, 1986; Torre and Poggio, 1986). Thus,
one approach to edge detection is to perform the following steps: (1) smooth the signal
using a Gaussian filter, (2) differentiate the signal, and (3) locate maxima in its directional
derivatives.

3

Mathematically, these stages can be summarized (for a one--dimensional signal) as lo-
cating maxima in -. (G * I), where G is a Gaussian function and * denotes the filtering,
oj convolution vperatiu". Interestingly, the same operation can be obtained by performing

( A G) * 1. This means that the two successive operations, smoothing and differentiation,
can be combined. The image is filtered through a new function, the first derivative of a

Gaussian. Maxima in the first derivative of the smoothed image can be detected equiva-
lently by finding locations where the second derivative of the smoothed image crosses zero.
If we again use Gaussian smoothing, then mathematically, this second scheme corresponds
to finding zero-crossings in the signal ( d--'G) * I. To summarize, edges can be found by
(1) passing the image through a filter whose shape is the first or second derivative of a
Gaussian, and (2) locating features such as maxima or zero-crossings in the result of this
filtering stage. For the case of one dimension, the use of maxima and zero-crossings in the

derivatives of Gaussian-filtered images is illustrated in Figure 2. The figure shows a one-
dimensional intensi -, profile obtained by taking a slice through a natural image, the same

2Because the derivative of a sine function sin(wx) is w cos(wz), it follows that the effect of differ-
entiation is to enhance periodic components with high spatial frequency (large W).

3 One can detect maxima in the absolute value of this derivative, or equivalently, maxima or
minima (positive or negative peaks) in the derivative itself.
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Figure 2. Detecting intensity changes. (al One-dimensional intensity profile obtained by measur-
ing intensities along a horizontal slice of a natural image. (b) The result of smoothing the profile in
(a). (c) The result of additional smoothing of (a). (d) and (e) The first and second derivatives, re-
spectively, of the smoothed profile shown in (c). The vertical dashed lines indicate peaks in the first
derivative and zero-crossings in the second derivative that correspond to two significant intensity
changes (Hildreth, 1987).
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profile following Gaussian filtering, and how the edges can be identified by the maxima (or
peaks) in the first derivative or zero-crossings in the second.

Peeks and zero-crossings in one and two dimensions

This basic scheme, presented above for a one-dimensional signal, has a number of pos-
sible extensions to the analysis of two-dimensional images. One alternative uses directional
first or second derivative operators4 for performing the two-dimensional differentiation (see,
for example, Macleod, 1972; Davis, 1975; Persoon, 1976; Rosenfeld and Kak, 1976; Pratt,
1978; Haralick, 1980; Binford, 1981: Nevatia and Babu, 1980; Zucker, 1987). A second
strategy is to evaluate, at each location in the image, the direction of the intensity gradient,
which is the direction along which the intensity changes most rapidly. A one-dimensional
analysis of intensity changes is then applied locally in this direction (for example, Canny,
1986). In a third alternative, the image is first passed through a single, non-directional fil-
ter, whose shape is defined by V 2 G, the Laplacian of a two-dimensional Gaussian function
(the Laplacian is the sum of the two directional derivatives in the horizontal and vertical
directions), and then followed by the detection of the zero-crossings in the result of tlls
filtering stage. The V 2 G operator is shown in Figure 3. It is interesting to note in this
regard that under quite general conditions, the zero-crossings representation produced in
this manner gives a complete representation of the image; that is, the original image can be
reconstructed (up to a single scaling factor) from the zero-crossing contours alone (Curtis
and Oppenheim, 1987).

Multiple scales

Intensity edges can occur in an image at a variety of scales. Some edges are sharp
and close together, others are gradual and well separated. It proved difficult to capture
all of the different types of significant intensity changes using only a single fixed operator.
An approach that has evolved in computational vision in response to this problem is to
analyze the image at a number of different scales (for example, Rosenfeld and Thurston,
1971; Marr and Hildreth, 1980; Mayhew and Frisby, 1981; Witkin, 1983; Canny, 1986). In
a coarse scale edge representation, only a limited number of significant, relatively isolated
edges would be revealed, whereas a fine scale (high resolution) analysis would yield a denser
representation of the edges. In terms of the edge detection scheme outlined above, the
resolution or scale of the analysis is determined by the size of the operator (such as the
value a of the space constant of the underlying -aussian in the V2 G operator). Multiple
scale analysis is therefore achieved by the simultaneous use of a number of operators of
different sizes, as shown in Figure 4.

4 These operators compute the derivative of the smoothed image along a particular two-dimensional
direction.



9

b.

a.
Figure 3. The V2 G operator. (a) Three-dimensional plot of the shape of the two-dimensional
operator. (b) A one-dimensional cross-section through the center of the operator.

This general idea of multiple scale analysis is in agreement with the large body of
psychophysical data regarding multiple channels in the visual system. Experiments using
techniques such u- detection, adaptation, and discrimination, suggest that at each location in
the visual field, a number of mechanisms analyze the image at a range of different scales (for
example, Campbell and Robson, 1986; Cowan, 1977; Graham, 1977; Watson and Nachmias,
1977; Wilson and Bergen, 1979). These mechanisms appear to be sensitive to different
ranges of spatial and temporal frequency.

Biological significance

One question regarding edge representations based on features such as peaks and zero-
crossings is their biological relevance. It is known that the appropriate kind of filtering takes
place at the level of the retina and the lateral geniculate nucleus. That is, at this level, the
image can be thought of as being passed through filters, or receptive fields, whose shape can
be closely approximated by the V2 G shape presented above. It is not entirely clear, however,
what processing takes place beyond this first stage, at the level of the primary visual cortex.
It is, in fact, an instructive point that in spite of the large body of icnowledge regarding
the anatomy and physiology of the primary visual cortex, relatively little is known about
the functions it performs. Many cortical studies are in general agreement with the notion
that this area may be involved, among other functions, with the task of edge detection.
In particular, the so-called cortical simple cells have often been described as edge and
bar detectors. This view is not universally accepted, however (see, for example, DeValois,



10

a..

'U * ~) ~No

C'C
1/~~~~N Io No~4~:.... ~-

Figure 4. Multi-resolution image analysis. (a) The original image. (b) and (c) Edge representa-

tions obtained at two different scales (Canny, 1986).
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Albrecht and Thorefl, 1982), and the exact function of these and other cortical units remains
unclear.

A possibility raised by the preceding discussion is that one of the functions of this corti-
cal area may be to construct a number of zero-crossing maps at different scales, and then to
combine them to construct an edge representation of the incoming image. This point of view
regarding the possible function of the primary visual cortex gives rise to specific predictions
that can be tested by physiological techniques. Some of these predictions have, in fact, been
tested (Richter and Ullman, 1986), and the results appear generally to be compatible with
a zero-crossing based view. Recent psychophysical studies (for example, Watt and Mor-
gan, 1983, 1984) provide some support for the use of zero-crossings in human vision, but
show that additional primitive features, such as stationary points in an approximation to
the second derivative of the image intensities, are essential to account for the ability of the
human visual system to detect and localize the positions of significant intensity changes in
the image. The experiments performed so far are insufficient to determine conclusively the
role of edges in early vision, but they serve to demonstrate that connections are starting to
develop between computational theories on the one hand, and empirical biological studes
of brain mechanisms on the other.

Figure 5. Subjective contours. Examples of boundaries that can be perceived, but which cannot
be detected directly by an intensity-based edge detection scheme.

A final comment before leaving the topic of edge detection is that even if features such
as peaks or zero-crossings in the result of smoothing and differentiating the image are
being detected, it should be realized that they constitute only one stage in the analysis of
boundaries. As mentioned above, edge representations at different scales must somehow
be combined. In addition, there are many types of boundaries that humans are sensitive
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to, but which cannot be captured by the zero-crossing scheme or by other intensity-based
edge detection techniques. Examples of such boundaries include texture edges, in which the
two sides of the boundary differ in texture rather than in average intensity, and subjective
contours, which the visual system fills in from different types of evidence when a physical

discontinuity in the image is not present (see Figure 5). It is interesting to note that
recently, cells have been found rather early in the visual system, in cortical area V2, that
clearly respond to subjective contours (von der Heydt et al., 1984).

2.2 Binocular Stereo

The left and right eyes obtain two slightly different views of the world, and we use the
difference between these two views to recover the distances to surfaces in the environment.

In particular, there is disparity between the positions of corresponding features in the two
retinal images, which depends both on where the objects are located in space, and where

the eyes are focused. Binocular stereo, the process that uses these disparities to recover 3-D
information, is a critical component of human vision - it is considered our most accurate
system for recovering the distances to surfaces (Westheimer and McKee, 1978, 1980; Poggio

and Poggio, 1984).

Examining the process of stereo vision from a computational perspective, there are
three main steps that need to be solved. The first is to extract elements from the images,
whose positions will be compared in the two stereo views. The second is to match up these
elements iu the two views; that is, for each element in the left image, an element is located
in the right image that corresponds to the same physical feature in the scene. Finally,
through a geometric transformation, the disparities in position of features in the two images
determine the distances to objects in space. It turns out that the second step, referred to as
the stereo correspondence problem, is one of the most difficult aspects of the stereo process.

When we consider stereo views of a natural scene, such as those shown in Figure 6a,
it might appear that the stereo correspondence problem ought to be straightforward. One
could, for example, extract small patches from the left image, and look for the most similar
patch of image intensities in the right image. This strategy is referred to as grey-level
correlation, and it formed the basis for early stereo systems developed in computer vision
(for review, see Barnard and Fischler, 1982), as well as early models of human stereo vision
(for example, Sperling, 1970). Techniques based on matching the image intensities did not
work well in practice, primarily for two reasons. First, the image intensities can change
significantly between the two views - they undergo photometric and geometric distortions.
An example of a photometric change between the two images is a bright highlight that
appears in one image but not the other, because of the way the surface catches the light.
An example of a geometric change is a rotation of one image relative to the other. Such
rotations often occur when the angle of gaze deviates significantly from straight ahead. These
distortions can lead to significant errors in stereo methods based on grey-level correlation.
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a.

b.

Figure 6. Stereo analysis. (a) Aerial stereo photographs of a section of the campus at the

University of British Columbia. (b) The disparities computed by the Marr-Poggio-Grimson stereo

correspondence algorithm (Grimson, 1985), for the images shown in (a). Brightness encodes depth,

with brighter contours being closer to the viewer.
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There is a second problem, however, that is more severe - there is tremendous ambi-
guity in matching features between the two images. Given some patch in one image, there
are often many patches in the other that are quite similar. This ambiguity is exacerbated
by the wide range of depths contained in a typical scene, from which it follows that there
will be a wide range of possible disparities between features in the two images. To solve the
stereo correspondence problem, the matching process needs to be constrained, in order to
derive a unique matching of features between the two stereo views.

The ambiguity problem is best ilustrated with stereo images that consist of random
dots, as shown in Figure 7 (Julesz, 1971). The left image is a random array of black and
white dots. To construct the right image, patterns of dots from the left image are shifted by
different amounts to the left or right in the right image, creating disparity in their positions
in the two stereo views. In the case of Figure 7, a central patch of dots in the left image is
shifted to the right in the right image. If the resulting patterns are observed in such a way
that the left eye views only the left pattern and the right eye views the right, a perception of
3-D surfaces at different depths results from the relative placement of the dots. The ability
to 'fuse' random-dot stereograms to form a perception of depth illustrates two important
aspects of stereo vision. First, the features that are matched between the two images must
be simple - stereo fusion does not require that we recognize objects in the image, and match
entire objects between the two stereo views. Second, it illustrates the inherent ambiguity
faced by the stereo correspondence process. In principle, any dot in the left image could

match any dot in the right image of the same color.

Figure 7. A random-dot stereogram with disparities that reveal two depth planes stacked on top
of one another.
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To solve the stereo correspondence problem uniquely, it is necessary to constrain the match-

ing process in some way. Computational models of the stereo correspondence process use
a variety of such constraints. First, an object in space occupies only a single location at

one time, which implies that each feature in the left image matches only a single feature in
the right image. This is referred to as the uniqueness constraint. Second, because of the

nature of stereo projection, features located along a particular line in one image all match
with features along a line in the other image. If the eyes are focused at a distance, then
these corresponding lines are roughly horizontal and at the same vertical height in the two

images. If, however, the eyes are focused at a nearby object, or the angle of gaze deviates
significantly from being straight ahead, then these lines have different orientations in the
two images. If the positions of the eyes in their orbit are known, then it is possible to deter-
mine where the corresponding lines lie in the two images. This facilitates stereo matching,

because now, given a feature in one image, it is only necessary to search along a single line

in the other image for a possible match. Virtually all models of stereo vision assume that
the viewing geometry is known. This is referred to as the epipolar constraint.

Finally, all models of stereo correspondence assume some form of the constraint that the
distance to surfaces in the scene tends to vary slowly across the image (for example, Marr
and Poggio, 1976, 1979; Mayhew and Frisby, 1981; Baker, 1982; Barnard and Fischler, 1982;
Medioni and Nevatia, 1985; Pollard, Mayhew and Frisby, 1985; Prazdny, 1986; Barnard,

1987; Hoff and Ahuja, 1987). Surfaces are usually smooth, so that the depths of nearby
points on the surface are usually similar. Computational models have used this continuity

constraint in different ways. Some try to match features in the two views in such a way

that the variation in depth of the resulting surfaces is minimized (for example, Prazdny,

1986; Barnard, 1987). Others impose a constant limit on the rate of change of disparity

across the image - in other words, they do not allow matches to be made that would imply
a surface that is too steeply slanted in depth (for example, Medioni and Nevatia, 1985;
Pollard, Mayhew and Frisby, 1985). This latter approach was motivated by psychophysical
studies that suggest that in human stereo vision, there is a strict limit on the gradient of
stereo disparity (for example, Tyler, 1975; Burt and Julesz, 1980). Finally, some models

use a form of this constraint based on the idea that disparities vary slowly along connected
edge contours in the image, referred to as figural continuity (Mayhew and Frisby, 1980,

1981; Baker and Binford, 1981; Baker, 1982; Medioni and Nevatia, 1985; Grimson, 1985).
These latter models assume that features along continuous contours in the image are likely
to lie along contiguous locations on a surface in space, and should therefore have similar or

smoothly varying disparities. Mayhew and Frisby (1981) present psychophysical evidence
that a ftgural continuity constraint is used in human stereo vision.

Simple strategies for computing stereo correspondence, such as the grey-level correla-

tion technique mentioned earlier, work well on random-dot patterns and highly textured

natural images, even when the underlying surfaces are quite complex. The need to provide
a robust solution for a wide range of natural imagery has proven to be a difficult problem,
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however, which appears to require a more complex strategy. In search of more successful
algorithms, many computational models attempt to incorporate knowledge of human stereo
vision. These models, in turn, provide insight into how these aspects of human vision are
useful in solving the stereo correspondence problem.

There are at least three observations regarding human stereo vision that have been
incorporated into computational models. First, as we noted in the previous section, there is
much evidence that the human visual system initially extracts features in the image, such as
sharp intensity changes or edges, and it has been suggested that these features may serve as
the basic matching elements for stereo correspondence (for example, Barlow, Blakemore and
Pettigrew, 1967; Marr and Poggio, 1979; Mayhew and Frisby, 1981). Second, perceptual
demonstrations suggest that the human stereo system makes use of the different resolutions
of analysis performed by the early stages of vision (for example, Felton, Richards and Smith,
1972; Julesz and Miller, 1975). Finally, it has been shown that eye movements are critical in
fusing two stereo views. If the eyes are fixated at a particular distance, it is only possible to
fuse features in the left and right views whose depths fall within a limited range around the
fixation distance (known as Panum's fusional area; see, for example, Mitchell. 1966; Fender
and Julesz, 1967). Objects outside of this range are seen as double. One method that can
be used to fuse features over a wider range of depths is to perform vergence eye movements,
fixating on different depth planes.

Many stereo models incorporate some or all of these factors. For example, most stereo
systems match features between the two images, such as sharp intensity changes, edges, or
other related features (for example, Marr and Poggio, 1979; Barnard and Thompson, 1980;
Mayhew and Frisby, 1981; Grimson, 1981, 1985; Baker and Binford, 1981; Baker, 1982;
Barnard and Fischler, 1982; Medioni and Nevatia, 1985; Pollard, Mayhew and Frisby, 1985;
Prazdny, 1986; Hoff and Ahuja, 1987). Some models also assume that the corresponding
features in the two eyes are similar to one another in their contrast, orientation in the image,
sharpness, and so on, which can also narrow down possible matches (for example, Arnold
and Binford, 1980; Baker and Binford, 1981; Baker, 1982; Medioni and Nevatia, 1985).
Stereo correspondence models that match features obtained at multiple resolutions include
those proposed by Marr and Poggio (1979), Moravec (1980), Grimson (1981, 1985), Mayhew
and Frisby (1981), and Hoff and Ahuja (1987).

The analysis of appropriate matching features in computational models of stereo cor-
respondence has motivated a number of psychophysical studies aimed at determining which
features are used in human stereo vision. Mayhew and Frisby (1981) provide evidence that
stereo matching features are extracted after the image has been filtered with a circularly
symmetric operator (such as the circular difference-of-Gaussians function), and include the
locations of peaks in this filtered image. Bulthoff and Mallot (1987) demonstrate that the
human stereo system can derive a 3-D impression by matching smooth variations in shad-
ing, but that the sensation of depth is much weaker than that derived in the presence of
sharp edge features in the stereo images.
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The stereo correspondence model proposed by Marr and Poggio (1979) was presented
as a possible model of human stereo vision, and has three main components. First, stereo
matching takes place independently at different resolutions. Second, within each resolution,
there is a limit to the amount of disparity over which features can be matched. At the
coarsest scale, the algorithm searches over larger distances for matching features, whereas
at the finest resolution, there is a more severe limit on the distance over which the image is
searched for possible matches. Third, the matches established at the coarse resolution guide
eye movements that shift the entire images right and left in a way that eventually allows
the matching of features at all resolutions. Overall, matches at the coarse scale provide
a rough idea of where objects are located in depth, and this rough depth map becomes
successively refined as matches are established at finer scales. The system incorporates
roles for multi-resolution analysis and eye movements, which are known to exist in human
stereo vision. This algorithm (see also, Grimson, 1981, 1985) has been implemented in a
number of computer vision systems, and is one of the most thoroughly tested of existing
stereo systems. Figure 6b shows the results of this algorithm applied to the two aerial stereo
photographs shown in Figure 6a. The brightness of edge contours represents depth, with
brighter contours closer to the viewer. Computer models of this sort serve as a rigorous teit

for models of human stereo processing.

Other models of stereo correspondence have emerged over the last several years that
also attempt to mimic aspects of the human stereo system (for example, Mayhew and Frisby,
1980, 1981; Pollard, Mayhew and Frisby, 1985). A key aspect of the early model proposed
by Mayhew and Frisby (1981), for which they provide psychophysical evidence, is that the

locations of image features at multiple spatial resolutions form a combined "signature" that

is matched between the left and right views. This differs from the Marr-Poggio (1979)
model, in which stereo matching takes place independently at different spatial scales. The
model proposed by Pollard, Mayhew and Frisby (1985) (the PMF algorithm) combines the
epipolar and uniqueness constraints with a constraint on the disparity gradient. That is,
the rate of change of disparity from one image location to the next is restricted to lie within

some specified bounds. The PMF algorithm has two stages. In the first, every potential

match between a pair of features in the left and right images is assigned an initial "strength"
that depends on the number of other potential matches within a small neighborhood whose

disparities fall within the disparity gradient limit. The second stage is a relaxation proce-

dure, in which matches that are unambiguous or which have maximum strengths are used to

disambiguate other potential matches. The PMF algorithm was motivated by psychophys-
ical studies that demonstrate the existence of a disparity gr.dient limit in human stereo

vision (for example, Tyler, 1975; Burt and Julesz, 1980). Vaiiations on the use of relaxation

procedures for solving the stereo correspondence problem have also been considered by Marr
and Poggio (1976), Barnard and Thompson (1981) and Prazdny (1985).

Given the importance of physical constraints in guiding the nature of computational
solutions to the stereo correspondence problem, one would expect these constraints to be
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reflected in the physiological mechanisms underlying binocular combination in biological
systems. There has been considerable interest in understanding the neural circuitry that

underlies stereo processing in the primate visual system (for review, see Poggio, 1984; Poggio

and Poggio, 1984). In physiological studies by Poggio and his colleagues (Poggio and Fischer,

1977; Poggio and Talbot, 1981; Poggio, 1984), populations of cells were found in cortical

areas V1 and V2 of the macaque monkey, which respond to the disparity in position of

features appearing in the left and right eyes. Some cells respond best when objects appear

in front of the point of fixation of the two eyes (NEAR cells), other cells respond best

when objects appear behind the fixation point (FAR cells), and a third class responds to

objects at depths right around the fixation point. Some of the latter class of cells are

excited by disparities around zero (the tuned excitatory cells), while others are inhibited

by these disparities (tuned inhibitory cells). It was shown recently that these cells respond

to disparity in complex random-dot stereograms (Poggio, 1984), so their output effectively

represents the result of solving a difficult stereo correspondence problem.

Several of the constraints used in computational models are reflected in the neural
processes underlying stereopsis. For example, the left and right receptive fields of disparity

sensitive cells are located at roughly the same vertical positions in the two eyes, so that these

cells will be most active when the two stereo views are in approximate vertical register. (The

human stereo system can tolerate large overall vertical disparities between the left and right
images, but it appears that much of this disparity is compensated for through vertical eye

movements that bring the two images into rough vertical register; only about 4'-7' ,f vertical

disparity can be tolerated at a single eye position (Nielsen and Poggio, 1984).) The fact
that corresponding features in the two eyes must be located at roughly the same vertical

location is analogous to the assumption in computational models that the epipolar geometry
is known.

The receptive fields of disparity sensitive cells are also located at roughly the same

horizontal positions in the two eyes. For many of the NEAR and FAR cells, their disparity

sensitivity for bar stimuli extends over a range of one degree or more on either side of zero

disparity (Poggio and Fischer, 1977; Poggio and Talbot, 1981; Poggio, 1984). Others have
a narrower depth response profile. This overall range is small compared to the actual range

of disparity that typically exists for a natural scene. This mechanism effectively constrains
the range of search between potential corresponding features in the two retinal images, for

a given eye position. As noted earlier, vergence eye movements can be used to bring objects

over a wider range of depths into roughly corresponding locations on the two eyes. Based on
psychophysical evidence from stereo-anomalous observers, Richards (1971) proposed that

human stereopsis combines the activity of three populations of neurons that are preferentially
sensitive to crossed, near zero, and uncrossed disparities. The existence of the three classes of

NEAR, FAR and TUNED disparity sensitive cells supports this hypothesis. The use of pools

of disparity cells with limited disparity range is an explicit component of the Marr-Poggio
(1979) stereo model. In addition, Marr and Poggio proposed that multiple spatial frequency
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channels provide input to these disparity sensitive mechanisms, with coarser channels feeding
mechanisms that are sensitive to larger ranges of disparity. This aspect of the model is

supported by physiological studies of binocular mechanisms in the cat (Pettigrew et al.,
1968; Ferster, 1981), which show a strong correlation between receptive field size and width

of disparity tuning curves.

Physiological evidence does not yet address the use of constraints such as smoothness

and continuity of disparity information, or the use of a disparity gradient limit. These con-
straints presumably would be reflected in the nature of the interactions between neighboring
disparity sensitive cells. Many of the computational models proposed for the correspondence
process incorporate simple, local interactions between nearby disparity mechanisms, which

could easily be implemented in parallel over the visual field (for example, Marr and Poggio,

1976; Baruard and Thompson, 1981; Prazdny, 1985; Pollard, Mayhew and Frisby, 1985;
Poggio and Drumheller, 1986). Recent efforts have begun to address the details of the

neural circuitry that might underlie the parallel computation of binocular disparity. Koch
and Poggio (1987) proposed possible neural implementations of stereo disparity detectors,
which yield specific predictions for their behavior that can be tested through physiological
experiments.

Finally, we mention some other important aspects of stereo vision that have been ad-
dressed in computational and experimental studies, but which are not covered in this dis-

cussion. One problem is the detection of discontinuities in stereo disparity, which often
occur at the locations of object boundaries. Such discontinuities violate the assumptions of
smoothness and continuity of disparity, and may require specialized mechanisms to detect.
A second problem is the "filling-in" of continuous surfaces between image locations where
stereo disparities are initially computed. Human observers perceive continuous surfaces
when observing sparse random-dot stereograms. Computational models that initially de-
rive disparity measurements only at the locations of image features, such as edges, also raise
the problem of interpolating a dense disparity map between sparse disparity information.

A third problem is the transformation between stereo disparity and depth, which is likely
to require knowledge about the current viewing geometry, such as the position of the eyes.

2.3 The Analysis of Visual Motion

The measurement and use of visual motion is one of the most fundamental abilities of
biological vision systems, serving many essential functions. For example, a sudden move-.
ment in the scene might indicate an approaching predator or desirable prey. The rap"
expansion of features in the visual field can signal an object about to collide with the ob-
server. Discontinuities in motion often occur at object boundaries and can be used to carve
up the scene into distinct objects. Motion signals provide input to centers controlling eye
movements, allowing objects of interest to be tracked through the scene. Relative movement
can be used to infer the 3-D structure and motion of object surfaces, and the movement
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of the observer relative to the scene, allowing biological systems to navigate quickly and

efficiently through the environment.

The pattern of movement in the changing image is not given to the visual system

directly, but must be inferred from the changing intensities that reach the eye. The 3-D

shape of object surfaces, the locations of object boundaries and the movement of the observer

relative to the scene can in turn be inferred from the pattern of image motion. Typically,

the overall analysis of motion is divided into these two stages: first, the measurement of

movement in the changing two-dimensional (2-D) image, and second, the use of motion

measurements, for example to recover the 3-D layout of the environment. The following

two sections discuss computational studies that address these two aspects of motion analysis.

The measurement of motion

The measurement of movement may itself be divided into multiple stages and per-

formed in different ways in biological systems. There is evidence that in the human visual

system, motion may be measured by at least two different processes, termed short-range and
long-range processes (Braddick, 1974, 1980). The short-range process analyzes continuous

motion, or motion presented discretely, but with small spatial and temporal displacements
from one moment to the next. The long-range process may then analyze motion over larger

spatial and temporal displacements, as in apparent motion. There is evidence that these
two processes interact at some stage (for example, Green, 1983), but initially they may be

somewhat independent. This section addresses one fundamental aspect of the short-range
measurement of motion, the solution of the aperture problem.

Consider the computation of a projected 2-D velocity field, which assigns to each
feature in the image, a direction and speed of velocity. Figure 8a shows an example of the

projected velocity field for a 3-D wireframe object that is rotating around a central vertical
axis. In both biological and computer vision systems, the first mechanisms for measuring

this motion examine only a limited region of the visual image, and as a consequence, often
provide only partial information about the 2-D velocity field, due to the aperture problem

(Wallach, 1976; Fennema and Thompson, 1979; Burt and Sperling, 1981; Horn and Schunck,

1981; Marr and UUman, 1981; Adelson and Movshon, 1982). This problem arises when an

oriented pattern in the image, such as an edge contour, extends beyond the region of the

image analyzed by the initial motion detection mechanisms. The information provided by

such mechanisms is illustrated in Figure 8b. In this case, an extended edge E moves across
the image and its movement is observed through a window defined by the circular aperture

A. Through this window, it is only possible to observe the movement of the edge in the

direction perpendicular to its orientation. The component of motion along the orientation
of the edge is invisible through this limited aperture. Thus it is not possible to distinguish

between motions in the directions b, c and d. This problem is inherent in any motion

detection operation that examines only a limited area of the image, and arises when an
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oriented pattern extends beyond the region of the image analyzed by the initial motion
detection mechanisms.

As a consequence of the aperture problem, the measurement of motion in the changing

image requires two stages of analysis: the first measures components of motion in the

direction perpendicular to image features; the second combines these components of motion

to compute the full 2-D pattern of movement in the image. In Figure 8c, a circle undergoes

pure translation to the right. The arrows along the contour represent the perpendicular

components of velocity that can be measured directly from the changing image. These

component measurements each provide some constraint on the possible motion of the circle,

as illustrated in Figure 8d. The bold vector v represents the local perpendicular component

of motion at a particular location in the image. The possible true motions at that location are

given by the set of velocity vectors whose endpoint lies along the line I oriented perpendicular

to the vector v. Examples of possible true velocities are indicated by the dotted vectors.

The movement of image features such as corners or small spots can be measured directly.

In general, however, the first measurements of movement provide only partial information
about the true movement of features in the image, and must be combined to compute the
full pattern of 2-D motion.

The measurement of movement is difficult because in theory, there are infinitely many
patterns of motion that are consistent with a given changing image. For example, in Figure

8e, the contour C rotates, translates and deforms to yield the contour C' at some later time.

The true motion of the point p is ambiguous. Additional constraint is required to identify a

unique solution. In general, it may not be possible to recover the 2-D projection of the true

3-D field of motions of points in space, from the changing image intensities. Factors such
as changing illumination, specularities and shadows can generate patterns of optical flow in

the image that do not correspond to the real movement of surface features. The additional

constraint used to measure image motion can yield at best a solution that is most plausible
from a physical standpoint.

Many physical assumptions could provide the additional constraint needed to compute a

unique pattern of image motion. One possibility is the assumption of pure translation. That
is, it is assumed that velocity is constant over small areas of the image. This assumption has

been used both in computer vision studies and in biological models of motion measurement
(for example, Lappin and Bell, 1976; Pantle and Picciano, 1976; Fennema and Thompson,

1979; Anstis, 1980; Marr and Ullman, 1981; Thompson and Barnard, 1981; Adelson and
Movshon, 1982). Methods that assume pure translation may be used to detect sudden

movements or to track objects across the visual field. These tasks may require only a rough
estimate of the overall translation of objects across the image. Tasks such as the recovery of

3-D structure from motion require a more detailed measurement of relative motion in the

image, and require the use of a more general physical assumption.
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Figure 8. The aperture problem. (a) On the left are three views of a wireframe object undergoing
rotation around a central vertical axis. On the right, the arrows along the contours of the object
represent the instantaneous velocities of points along the object's contours at one position in the

object's trajectory. (b) An operation that views the moving edge E through the local aperture A
can compute only the component of motion c in the direction perpendicular to the orientation of the

ge. (c) The circle undergoes pure translation to the right; the arrows represent the perpendicular

components of velocity that can be measured from the changing image. (d) The curve C rotates,
translates and deforms over time to yield the curve C'. The velocity of the point p is ambiguous.

(e) The vector v represents the perpendicular component of velocity at some location in the image.

The true velocity at that location must project to the line 1 perpendicular to v; examples are shown
with dotted arrows.
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Other computational studies have assumed that velocity varies smoothly across the
image (Horn and Schunck, 1981; Hildreth, 1984; Nagel, 1984; Nagel and Enkelmann, 1984;
Anandan and Weiss, 1985). The assumption rests on the principle that physical surfaces
are generally smooth; that is, variations in the structure of a surface are usually small,
compared with the distance of the surface from the viewer. When surfaces move, nearby
points tend to move with similar velocities. There exist discontinuities in movement at
object boundaries, but most of the image is the projection of relatively smooth surfaces.

Thus, it is natural to assume that image velocities vary smoothly over most of the visual
field. A unique pattern of movement can be obtained by computing a velocity field that is
consistent with the changing image and has the least amount of variation possible.

The use of the smoothness constraint allows general motion to be analyzed. Surfaces
can be rigid or nonrigid, undergoing any movement in space. This assumption also can be
embodied in the motion measurement computation in a way that guarantees a unique so-

lution, which is often physically correct (Hildreth, 1984; Ullman and Yuille, 1987). Finally,
the velocity field of least variation can be computed straightforwardly, using standard com-
puter algorithms (Horn and Schunck, 1981; Hildreth, 1984; Nagel and Enkelmann, 1984),
as well as simple analog resistive networks that resemble the properties of neural networks
(Poggio, Torre and Koch, 1935; Poggio and Koch, 1985). Perceptual studies reveal a simi-

larity between the behavior of a motion measurement computation based on the smoothness
assumption and the human perception of motion (Hildreth, 1984; Nakayama and Silverman,
1987a,b).

The aperture problem in motion measurement can be examined from a physiological
perspective. Early movement detectors in biological systems have spatially limited recep-
tive fields, and therefore face the aperture problem whenever an extended, oriented pattern
moves across their receptive fields. Stimulated by a theoretical analysis of this problem,
Movshon et al. (1985) sought and found direct physiological evidence for a two-stage mo-
tion measurement computation in the primate visual system. Two visual areas that include
an abundance of motion-sensitive neurons are cortical areas V1 and MT. MT is the middle
temporal area of extrastriate cortex, located in the posterior bank of the superior tempo-
ral sulcus (Van Essen and Maunsell, 1983). Movshon et al. (1985) explored the type of
motion analysis taking place in area MT, using visual stimuli that consist of superimposed
sinewave gratings, with different orientations and directions of motion. The results of these
experiments indicate that the selectivity of neurons in area VI for direction of movement is

such that they could provide only the component of motion in the direction perpendicular
to the orientation of image features. Area MT, however, contains a subpopulation of cells,
referred to as pattern cells, that appear to respond to the 2-D direction of motion of a com-
bined grating pattern, independent of its individual components. These neurons may serve
to combine motion components to compute the real 2-D direction of velocity of a moving
pattern. These experiments do not yet distinguish between the use of the simple assump-
tion of pure translation, as suggested in the study (Movshon et al., 1985), versus a more
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general assumption such as smoothness. Stimulus patterns undergoing more complicated
motions are required to make such a distinction. If the pattern cells in area MT embody the
assumption of smoothness in their computation of motion, one would expect to find direct
interaction between pattern cells that analyze nearby areas of the visual field.

The recovery of 3-D structure from motion

When an object moves in space, the motions of individual points on the object differ
in a way that conveys information about its 3-D structure. Using 2-D shadow projections
of 3-D wireframe objects, such as that shown in Figure 8a, Wallach and O'Connell (1953)
showed that the human visual system can derive the correct 3-D structure of moving objects
from their changing 2-D projection alone. Other perceptual studies also demonstrated this
remarkable ability (for example, Braunstein, 1976; Johansson, 1975; Rogers and Graham,
1979; Ullman, 1979). Relative motion in the image is also created by movement of the
observer relative to the environment, and can be used to infer observer motion from the
changing image (for example, Gibson, 1950; Johansson, 1971; Lee, 1980; Regan, Kaufman
and Lincoln, 1986).

Theoretically, the two problems of (1) recovering the 3-D structure and movement
of objects in the environment and (2) recovering the 3-D motion of the observer from the
changing image, are closely related. The main difficulty faced by both is that infinitely many
combinations of,3-D structure and motion could give rise to any particular 2-D image. To
resolve this inherent ambiguity, it is necessary to impose additional constraint that allows
most 3-D interpretations to be ruled out, leaving one that is most plausible from a physical
standpoint. Computational studies have used the rigidity assumption to derive a unique
3-D structure and motion; they assume that if it is possible to interpret the changing 2-
D image as the projection of a rigid 3-D object in motion, then such an interpretation
should be chosen (for example, Ullman, 1979, 1983; Clocksin, 1980; Prazdny, 1980, 1983;
Longuet-Higgins and Prazdny, 1981; Tsai and Huang, 1981; Mitiche, 1986; Waxman and
Ullman, 1985; Waxman and Wohn, 1987). When the rigidity assumption is used in this
way, the recovery of structure from motion requires the computation of the rigid 3-D object
that would project onto a given 2-D image. The rigidity assumption was suggested by
perceptual studies that described a tendency for the human visual system to choose a rigid
interpretation of moving elements (Wallach and O'Connell, 1953; Gibson and Gibson, 1957;
Jansson and Johansson, 1973; Johansson, 1975, 1977).

Computational studies have shown that the rigidity assumption can be used to derive
a unique 3-D structure from the changing 2-D image. Furthermore, this unique 3-D in-
terpretation can be derived by integrating image information only over a limited extent in
space and in time. For example, suppose that a rigid object in motion is projected onto
the image plane by using orthographic projection. Three distinct views of four points on
the moving object are sufficient to compute a unique rigid 3-D structure for the points
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(Ullman, 1979). In general, if only two views of the moving points are considered or fewer

points are observed, there are multiple rigid 3-D structures consistent with the changing
2-D projection. Theoretical results regarding the recovery of a unique 3-D structure under
a variety of conditions are summarized in Ullman (1983) and Hildreth and Koch (1987).
These theoretical results are important for the study of the recovery of structure from mo-
tion in biological vision systems, for two reasons. First, they show that by using the rigidity
assumption, a unique structure can be recovered from motion information alone. It is not
necessary to make further physical assumptions, in order to obtain a unique solution. Sec-
ond, these results show that it is possible to recover 3-D structure by integrating image
information over a small extent in space and in time. This second observation could bear
on the neural mechanisms that compute structure from motion; in principle, they need only

integrate motion information over a limited area of the visual field and a limited extent in
time.

Computational studies also provide algorithms for deriving the structure of moving
objects. Typically, measurements of the positions or velocities of image features give rise to
a set of mathematical equations whose solution represents the desired 3-D structure. The
algorithms generally derive this structure from motion information extracted over a limited

area of the image and a limited extent in time. Testing of these algorithms reveals that
although this strategy is possible in theory, it is not reliable in practice. A small amount
of error in the image measurements can lead to very different (and often incorrect) 3-D
structures. This behavior is due in part to the observation that over a small extent in space
and time, very different objects can induce almost identical patterns of motion in the image
(Ullman, 1983, 1984a).

This sensitivity to error inherent in algorithms that integrate motion information only
over a small extent in space and time suggests that a robust scheme for deriving structure
should use image information that is more extended in space or time or both. This conclusion
is supported in recent computational studies (for example, Bruss and Horn, 1983; Lawton,
1983; Ullman, 1984a; Adiv, 1985; Bolles and Baker, 1985; Negahdaripour and Horn, 1985;
Yasumoto and Medioni, 1985; Bharwani, Riseman and Hanson, 1986; Shariat and Price,
1986; Subbarao, 1986; Waxman and Wohn, 1987), which show that consideration of motion
information that is more extended in space or time can lead to a stable recovery of structure.
The extension in time can be achieved by considering a large number of discrete frames or
by observing continuous motion over a significant temporal extent.

With regard to the human visual system, the dependence of perceived structure on the

spatial and temporal extent of the viewed motion has not yet been studied systematically,
but the following informal observations have been made. Regarding spatial extent, two or
three points undergoing relative motion are sufficient to elicit a perception of 3-D structure
(Borjesson and von Hofsten, 1973; Johansson, 1975), although theoretically the recovery
of qtructure is less constrained for two points in motion, and perceptually the sensation of
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structure is weaker. In addition, appropriate visual stimulation in a small region of the
peripheral visual field is adequate to elicit a strong sense of self-motion (Johansson, 1971).
Regarding the temporal extent of viewed motion, Johansson (1975) showed that a brief
observation of patterns of moving lights generated by human figures moving in the dark

(commonly referred to as biological motion displays) can lead to a perception of the 3-D
motion and structure of the figures. Other perceptual studies indicate that the human visual
system requires an extended time period to reach an accurate perception of 3-D structure

(Wallach and O'Connell, 1953; White and Mueser, 1960; Doner, Lappin and Perfetto, 1984;
Inada et al., 1986). A brief observation of a moving pattern sometimes yields an impression

of structure that is "flatter" than the true structure of the moving object. Thus, the human
visual system is capable of deriving some sense of structure from motion information that is

integrated over a small extent in space and time. An accurate perception of structure may,
however, require a more extended viewing period.

Most methods compute a 3-D structure from motion only when the changing image
can be interpreted as the projection of a rigid object in motion. They otherwise yield no
interpretation of structure or yield a solution that is incorrect or unstable. Algorithms
that are exceptions to this can interpret only restricted classes of nonrigid motions (for

example, Bennett and Hoffman, 1985; Hoffman and Flinchbaugh, 1982; Koenderink and van
Doom, 1986; Subbarao, 1986). The human visual system, however, can derive some sense

of structure for a wide range of nonrigid motions, including stretching, bending and more
complex types of deformation (Johansson, 1975; Jansson and Johansson, 1973; Todd, 1982,
1984). Furthermore, displays of rigid objects in motion sometimes give rise to the perception
of somewhat distorting objects (Wallach, Weisz and Adams, 1956; White and Mueser, 1960;
Braunstein and Andersen, 1984; Hildreth, 1984; Adelson, 1985). These observations suggest
that while the human visual system tends to choose rigid interpretations of a changing

image, it probably does not use the rigidity assumption in the strict way that previous
computational studies suggest.

Ullman (1984a) proposed a more flexible method for deriving structure from motion that

interprets both rigid and nonrigid motion. Referred to as the incremental rigidity, scheme,
this algorithm uses the rigidity assumption in a different way from previous studies. It
maintains an internal model of the structure of a moving object that consists of the estimated

3-D coordinates of points on the object. The model is continually updated as new positions
of image features are considered. Initially, the object is assumed to be flat, if no other cues
to 3-D structure are present. Otherwise, its initial structure may be determined by other

cues available, from stereopsis, shading, texture, or perspective. As each new view of the
moving object appears, the algorithm computes a new set of 3-D coordinates for points
on the object that maximizes the rigidity in the transformation from the current model

to the new positions. This is achieved by minimizimg the change in the 3-D distances

between points in the model. Thus the algorithm interprets the changing 2-D image as
the projection of a moving 3-D object that changes as little as possible from one moment
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to the next. Through a process of repeatedly considering new views of objects in motion

and updating the current model of their structure, the algorithm builds up and maintains
a 3-D model of the objects. If objects deform over time, the 3-D model computed by the
algorithm also changes over time. A parallel model based on Ullman's incremental rigidity

scheme was recently proposed by Landy (1986).

Physiological studies have uncovered neurons in higher cortical areas that are sensitive
to properties of the motion field that may be relevant to the recovery of the 3-D structure

and motion of surfaces in the environment, or to the recovery of the motion of the observer
relative to the scene. Many studies have revealed neurons sensitive to uniform expansion
or contraction of the visual field, a property that is correlated either with translation of the
observer forward or backward, or equivalently, motion of an object toward or away from the
observer. Such neurons have been found, for example, in the posterior parietal cortex of the

monkey (Motter and Mountcastle, 1981; Andersen, 1987). Other neurons have been found

that are sensitive to global rotations in the visual field (see, for example, Andersen, 1987;
Sakata et al., 1985). All of these neurons have large receptive fields, so they probably lack

the spatial sensitivity required to derive the detailed shape of an object surface from relative
motion. A recent study by Siegel and Andersen (1986) shows that motion processing in area
MT of primate visual cortex is critical to the recovery of structure from motion.

3. HIGH LEVEL VISION

The processes we have examined so far belong to the realm of low level vision. Their

goal is primarily to recover properties of the surrounding environment. Such processes can
be evaluated on the basis of their validity, that is, whether the results they deliver (such
as depth, surface orientation, etc.) are correct and accurate. The low level processes were

also characterized by a bottom-up and parallel mode of processing. "Bottom-up" means
that the processing depends on the visual stimulus, and not on the task being performed.
"Parallel" here means spatial parallelism; that is, the same operations are being performed

across the entire visual field or large parts of it.

In high level vision, the descriptions produced by rk.e earlier stages are used for tasks

such as recognition, visually guided manipulation, locomotion, and navigation through the
environment. At this stage the emphasis is often on usefulness rather than validity. There

are, for example, many possible ways to describe the elements in a given image for the

purpose of recognition, but some may be more useful than others. The processing here is

goal directed (as opposed to bottom-up), and spatially focused (as opposed to spatially
uniform).

A further distinction can be made between intermediate and high level vision. High

level vision uses specific knowledge about objects in the world, such as a catalog of objects

stored in long term memory, while intermediate vision does not. The terms "intermediate"
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and "high level" vision do not mean to imply a sequential order. It is possible, for example,
that recognition tasks may proceed on their own without relying on the prior application
of intermediate level processes. In section 3.1 we discuss the area of intermediate vision,
and in particular, the problem of extracting shape properties and spatial relations among
objects in the scene, from visual information. In section 3.2 we discuss one of the major
problems in high level vision - visual object recognition.

3.1 Intermediate Vision and Visual Routines

The eztraction of shape properties and spatial relations

The use of visual information often requires the extraction of shape properties of con-
tours and regions and the analysis of spatial relations among items in the image. This
analysis plays a role in visual classification and recognition. An example is shown in Figure
9. The figure on the left is recognized effortlessly and immediately as representing a face,
as opposed to the jumbled face figure on the right. In this example, the features comprising
the face are highly schematic. The eye or nose by themselves, for example, are crude rep-
resentations of a real eye or nose. It is primarily the spatial relations among the schematic
items that make it a face profile. The eye is inside the head boundary, the nose is attached
to the boundary, the eye is above the nose and below the eyebrow, and so on. Our ability to
recognize objects easily from such a representation demonstrates that we can naturally and
effortlessly extract in a single glance spatial relations such as inside, above or attached-to,

and then use these relations in recognition tasks.

There is some evidence that the ability to analyze such configurations and to detect
certain basic abstract shape properties and spatial relations already exists at a very early
age. For example, some studies (Fantz, 1961) have suggested that infants as young as one to
five weeks of age already make a distinction between "correct" and jumbled schematic faces.

At the physiological level, neurons were found in the STS area of the macaque visual cortex
that respond specifically to faces (Gross, Rocha-Miranda and Bender, 1972). According to
some reports (Perret, Rolls and Caan, 1982), these cells often respond to schematic line-
drawn faces, but not to scrambled face figures. These findings suggest the existence of
mechanisms that respond not only to specific and realistic faces, but to any configuration

that has the general overall shape and correct spatial relations among its parts.

The visual analysis of shape and spatial relations also plays an important role in plan-
ning actions and manipulating objects. During such activities, we often use vision to ans--.r

such questions as "can object A fit into the space between objects B and C?" as shown in
Figure 10. These questions may not be posed explicitly, but information about such re-
lations is obtained routinely in our daily activities. Problems of this type do not require
recognition, because they do not depend on naming the objects or on past familiarity with
them. They do, however, require the spatial analysis of shape and relations among objects.
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Figure 9. Recognizing faces. The figure on the left is perceived immediately as a face profile. The
figure on the right contains similar parts in a different spatial arrangement.

I

In this sense, this analysis belongs more to the level termed above "intermediate vision"

than to high level vision.

Propertiej of intermediate level vision: non-uniformity, open-endedness and task depen-
dence

The computations involved in extracting shape and spatial relations are also clearly not
part of the early visual processes, but must operate at a later, separate stage. As far as we

know, the operations involved in the construction of the early visual representations (such
as edge detection, the computation of depth, color, motion analysis, and so on), proceed

uniformly and in parallel across the entire visual field or a large part of it. In contrast, it

is not feasible to have at every location an "inside/outside detector," in the same way that

orientation of contours is recovered by a dense array of specialized orientation detectors.
More generally, it is not feasible to extract uniformly and in a bottom-up manner all the
possibly relevant shape properties and spatial relations in the image.

The extraction of shape and spatial relations is also more open-ended than the earlier
visual processes. That is, different tasks may require the extraction of different shape

properties and relations. There does not seem to be a clear bound on the number of

properties and relations that can be extracted; new ones can be learned as required by the
task. As a result of these properties, the computations involved in intermediate level vision

cannot be entirely bottom-up, but must be task dependent. That is, in viewing the same
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Figure 10. Spatial reasoning. It is possible to obtain, from visual information, answers to questions
such as, can the black disk be moved to the location of the cross without colliding withny of the
objects in the figure?

scene on two different occasions, the processes applied to the scene at this intermediate level
of processing may be different, depending on the visual task being accomplished.

The complexity of extracting shape properties and spatial relations

The perception of many shape properties and relations appears to us subjectively to be
immediate and effortless. This apparent immediateness is, however, deceiving; the compu-
tations required for extracting shape and spatial relations are often quite complicated. In
fact, in many cases the efficient analysis of shape and spatial relations is still beyond the
reach of current computer vision systems.

A simple illustrative example is the perception of inside/outside relations, that is,
whether a given location is inside or outside a closed curve. When the curve is not too

convoluted, this relation is easy to extract by "merely looking" at the image. In Figure 11,
the location marked "x" is clearly inside the curve in Figure Ila, and outside the curve in
Figure l1b. How do we reach this conclusion so effortlessly?

In computer vision, a popular method of computing inside/outside relations is the so-
called "ray intersection" method. A ray is drawn from the location in question to the edge
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x

a. b.
Figure 11. Judging inside/outside. The fact that the x lies inside the closed figure in (a) and
outside in (b) is established effortlessly, by "merely lonking" at the figure.

of the image, and the intersections made by the ray with the curve are counted. If the
number is even, the point is outside the curve, otherwise it must be inside. This procedure
is simple, but clearly insufficient. Consider, for instance, the examples in Figure 12. In
Figure 12a, the number of ray intersections is even, but the point lies inside the curve.
This is because the ray intersection method makes an implicit assumption that the curve
in question is isolated in the visual field, an assumption that is violated in this example. In
Figure 12b, the number of intersections is odd, therefore the ray intersection method would
conclude that the point lies inside the curve. In this case, the error arises because the ray
intersection method incorporates the assumption that the curve is closed. Figure 12c is a
slight variation on the inside/outside problem. The task is to determine whether any of the
points lie inside the closed curve. The ray intersection method would require applying the
test to all of the individual dots. What our visual system seems to do instead is somehow to

inspect the figure and verify that none of the dots lie in its interior. Finally, in Figure 12d,
the task is to find an "innermost" location (that is, a point that lies inside all three curves).
This task is visually straightforward, but it cannot be solved by any simple application of
the ray intersection method.

The conclusion is that the method used by our own visual system is more powerful and
flexible than the ray intersection method or any other method proposed so far in compu-
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a. -1b.

Figure 12. Deficiencies of the ray intersection method. (a) The number of intersections is even,

but the point lies inside the curve. (b) The number is odd, but the point is not inside a closed

region. (c) The task is to determine whether any of the points lies inside the figure. (d) The task

is to find a location that is internal to all three curves.

tational vision. More generally, we see that the computation of seemingly simple spatial

relations is surprisingly difficult. In addition, the problem is complicated by the facts that

intermediate level vision requires the capacity to extract efficiently an essentially unbounded

set of properties and relations, and that the computations performed must depend on the

particular visual task at hand.

Visual routines

A possible approach to this problem is that the perception of shape properties and

spatial relations is achieved by the application of visual routines to the early visual repre-

sentation (Ullman, 1984b). These visual routines are sequences of some basic operations

that are "wired into' the visual system. Routines for different properties and relations are

composed from the same set of basic operations, using different combinations for different

tasks. Using a fixed set of basic operations, the visual system can assemble different rou-

tines, and in this manner extract a large variety of different shape properties and relations.

The basic operations themselves are carried out by specialized and highly efficient mech-

anisms. To understand the perception of spatial relations in general, an important step
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would be to identify the set of basic operations. To explain how we perceive a particular
relation such as "above" or "inside" would require, in this framework, a specification of the
particular routine used for establishing the relation in terms of the underlying operations.
In the following section, we describe briefly three basic operations that appear to play a
useful role in visual routines: shifting and indexing, coloring, and boundary tracing.

Shifting and indexing

The application of visual routines implies a spatial and temporal structuring of the
processing. A certain operation is applied at a given location in the visual field, then
(perhaps depending on the results of this application) another operation is applied at a
new location. "Shifting" is the general operation of moving the focus of processing to a
required location. "Indexing" is a particular type of shifting, the shifting of the processing
focus to a salient location in the visual field. There is a considerable body of experimental
evidence related to the redirecting of the processing focus, the so-called "spotlight" of visual
attention. This body of evidence is reviewed, for example, by Posner (1980), and Treisman
and Gelade (1980).

k simple and elegant demonstration that appears to employ shifting and indexing comes
from Treisman's experiments with the conjunction of elementary properties (see also Beck
and Ambler, 1973). Her experiments have shown that certain odd-man-out targets can be
detected in a field of distractors in a parallel manner: the time to detect the target does
not depend significantly on the number of distractors in the background. For example, a
target blue X can be detected in constant time in a field of brown T's and green X's (up
to thirty background elements were used in these experiments) on the basis of its unique
color. Similarly, a target T can be detected in a field of X's in constant time, presumably
on the basis of orientation differences. In contrast, certain combinations (conjunctions) of
elementary properties require sequential search. For example, the target may be a green T
in a field of brown T's and green X's. The target in this case matches half the distractors
in shape and half in color. The evidence suggests that in this case the processing becomes
quite different: the visual system appears to scan the items sequentially in search of the
required conjunction. The scan is performed to a large extent internally, rather than by eye
movements.

The scan used in the conjunction search is a psychophysical example of the use of a
shifting operation. In the parallel search situation, the odd-man-out element is immediately
indexable, that is, the processing focus can shift immediately to it without dwelling on other
elements. This is, therefore, an example of an indexing operation. Recently, phenomena
related to shifting and selective visual attention have also been studied at the physiological
level (see, for example, the study by Moran and Desimone (1985) regarding location-specific
responses in area V4 of the alert macaque monkey).
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Region coloring and boundary tracing

Coloring and tracing are two somewhat similar operations. "Coloring" is the operation
of labeling a region with a unique label. Such labeling can be achieved by the bounded
activation of a region in the following manner. Starting from a given point, the area around
it in the internal representation is somehow activated. This activation spreads outward
until a boundary is reached, but it is not allowed to cross the boundary. If the initial
point lies inside a closed boundary, the entire region will be "colored," or labeled. This
labeling can provide, for example, a basis for separating "inside" from "outside" in the
tasks considered in Figures 11 and 12. These tasks also often involve an indexing operation:
the x is indexed first, and this location serves as the starting point for the coloring operation.
Additional stages would be required in all of these examples to complete the inside/outside
computations; however, these additions will not be considered further here.

Boundary tracing is a similar operation applied to one-dimensional entities in the image,
such as contours and boundaries. Starting from a given location on a contour, the contour
is traced sequentially in a given direction and labeled. From a computational standpoint,
such an operation could serve a useful role in the analysis of contours and boundaries, by
separating them from nearby contours. For a general discussion of coloring and boundary
tracing, see Ullman (1984b), and for a psychophysical exploration of boundary tracing, see
Jolicoeur, Mackey and Ullman (1986).

We have considered above only a small sample of the problems in intermediate level
vision. On the whole work in this area is only in its infancy, and many questions remain
unanswered. The approach discussed above is only one of several possible alternatives and
has so far been primarily motivated by computational considerations, and little is known
at present about the processes by which the human visual system extracts abstract shape
properties and spatial relations in the image.

3.2 Visual Object Recognition

The common view of object recognition is that it requires some sort of matching between
the internal representations of an object stored in memory, and a similar representation
generated from an object in the image. The process of object recognition is therefore
different from processes of intermediate and low level vision in that it is more intimately
related to the problems of memory organization, retrieval, expectations, and reasoning.

In this section we consider the problem of re-ognizing objects visually on the basis of
their shape. Shape-based recognition is only part of the problem of visual object recog-
nition, as other "paths" to recognition besides shape are possible. Objects are sometimes
recognized more on the basis of their color or texture than on the basis of their shape. In
other instances, visual recognition requires certain reasoning processes rather than the iden-
tification of a specific shape. We will also not consider here the problem often referred to
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as the segmentation problem, which has to do with the delineation of the object of interest
in an image. Finally, we will consider primarily the recognition of individual objects, rather
than object classification.

Why is object recognition difficult? According to one approach (termed the "direct"
approach (Abu-Mostafa and Psaltis, 1987)), the probiem is primarily one of memory size
and efficient parallel matching. To recognize objects, we have to store a large number of

object views in memory. In attempting to recognize an object, we must compare the object
currently in view with previously stored views of objects and select the one that resembles
it most. Models of human associative memory (Willshaw, Buneman and Longuet-Higgins,

1969; Hopfield, 1982) have suggested that brain mechanisms can cope efficiently with both
of these problems. In large scale neural networks, a large number of patterns can be stored,
and a new pattern can be compared simultaneously with all previously stored patterns.

There are, however, at least two problems with the direct approach. First, the set of all
possible views of all possible objects is likely to be prohibitively large, and at the same time
redundant. To recognize, for instance, triangles of any shape, position, and orientation, it
clearly is not necessary to store in memory a large number of representative shapes. Second,

it should be noted that the comparison used in such schemes between the current image

and the images stored in memory is a simple one, essentially a correlation of the viewed
image with previously stored images. In contrast, we can recognize objects from novel views
that may not be closely similar to, any previously stored view, by this simple comparison

measure.

The alternatives to the direct approach assume that we do not store and compare the
input patterns per se. Instead, we produce from the image some sort of internal representa-
tion of the viewed object, and compare it with similar descriptions stored in memory. The

hope is that some of the variations in the different appearances of an object will be handled
by the description process. That is, an object seen under diJerent viewing conditions, e.g.

from different viewpoints, will still produce highly similar descriptions. Most of the schemes
that have been proposed to date can be classified into three main approaches: the first based

on invariant properties, the second on object decomposition into parts, and the third on a

process of explicitly compensating for the transformation between the viewed object and
the stored model.

The invariant properties approach

This approach to object recognition assumes that objects lave certlin invariant proper-
ties that are common to all of their views. Formally, a property of this type can be thought

of as a function from object images to the domain of real numbers. For example, various

applications have used the notion of a "compactness measure," defined as the ratio of the

object's perimeter length to the square root of its apparent area. Round and compact ob-

jects will have a low score on this measure, while thin and elongated objects have a high
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score. Furthermore, the measure is unaffected by rotation, translation, and scaling in the

image plane. The idea is to define a number of such measures, and collectively they would

serve to identify each object unambiguously. The overall recognition process is thus broken

down into the extraction of a number of different properties, followed by a final decision

stage based on these properties.

In a popular variant of this approach, a property is not expected to be entirely invariant

for the different views of an object (or class of objects), but to be restricted to a small

interval. Properties of different objects may have partially overlapping ranges, but it is

hoped that by defining a number of different properties it will be possible to characterize

each object uniquely. This leads naturally to the notion of "feature spaces" used extensively

in pattern recognition. If n different properties are used, each object can be represented as

a point in an n-dimensional space. Recognition and classification then become problems of

clustering points in such spaces.

Another approach that belongs to this general class of invariant properties theories

is Gibson's theory of high-order invariances (Gibson, 1950, 1979). Gibson suggested that

invariant properties of objects may be discovered in "high order" invariances in the optic ar-

ray. Such invariances were assumed to be based primarily on spatial and temporal gradients

of texture density.

The invariant properties approach has been applied with some success to limited prob-

lems, such as the recognition of simple industrial parts under controlled viewing conditions.

The approach does not generalize well, however, to more complicated domains. The weak-

ness of the approach seems to be that it is difficult, and often impossible, to find relatively

simple properties that are preserved across the different transformations that an object may

undergo.

Object decompojition into parts

A second approach, which replaced the previous one as the main approach to object

recognition, relies on the decomposition of objects into constituent parts. The approach

appeals to the intuition that many objects seem to have natural parts. For example, the

human body can be divided at some level into a head, torso, arms, and legs. In the de-

composition approach, these parts are detected, and the recognition of the entire object

proceeds on the basis of the constituent parts and their relationships.

There are a number of subclasses within this general approach, the most popular of

which has been the "structural description" method. This approach assumes that it would

be easier to capture object i~avariances after their parts have been identified. In particular,

simple relations between pa: .. will remain invariant across all object views. For example,

in the character "T" one can define two main parts and certain relations (such as "join")

that are common to all legal instances of this character.
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An early example of a theory of this type applied to human vision is Milner's (1974)
model of visual shape recognition. This theory deals primarily with 2-D shapes, and uses
as basic parts primitive features such as edges and line segments. Marr and Nishihara
(1978) proposed a structural description theory applied to 3-D objects. They used as
primitive parts elongated volumes called "generalized cylinders." Recognition proceeds by
constructing a description of the object in terms of these cylinders and their relationships.
The description produced in this manner is "object centered," in the sense that the final
description relies on the internal relations among parts, and not on their relations relative
to the viewer. Additiornal recent theories of this class applied to human vision include
Biederman's (1985) theory of recognition by components, and Hoffman and Richards' (1986)
"codon" scheme for the description and recognition of image contours.

Although the use of object parts seems to have some clear merits, i: also appears
that the use of structural descriptions as proposed in most of these schemes has a number
of limitations. One is that the decomposition into natural parts is often insufficient to
characterize the object in question. In many cases precise shape, rather than the general
arrangement of parts, appears to be important. Another problem that appears to limit
the applicability of the approach is that many objects do not decompose naturally into the

union of clearly distinct parts.

The alignment approach

The idea behind the alignment approach is to detect and explicitly compensate for
the transformations between an object currently in view and its model stored in memory.

This concept has been applied in the past only in simple domains, such as printed character
recognition of a known font type (Neisser, 1967, chapter 3). In this application it is assumed
that a character in view may differ from its ideal prototype stored in memory because it
may rotate, translate, and change scale. The first step in the recognition process is therefore
to compensate for these transformations. This compensation can be done prior to the

identification of the letter in question. For example, displacement can be compensated for
by computing the "center of mass" of the letter and then shifting the letter so that this point
always coincides with a fixed location. Size and orientation can also be "normalized" during
this first stage. Following the normalization, the remaining differences between the viewed
letter and its stored model are small, and a straightforward comparison should suffice to
identify the letter correctly.

This general approach has been revived recently and extended in an attempt to apply it
to the recognition of complex 3-D objects. The general idea remains the same. The viewed

object differs from its stored model, because it has undergone a certain transformation such
as a change in position and 3-D rotation (in the case of rigid objects). In an alignment
approach, the first stage is to detect this transformation prior to the identification of the
object. The transformation can then be "undone"; this stage is called the alignment stage.
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Following the alignment, the stored model and viewed object are in close agreement, and

the correct model is therefore easier to determine.

Compared to translation, rotation and scaling in the image, the transformations that

the image of a 3-D object can undergo are more complicated to determine and compensate

for. A number of recent schemes (for example, Lowe, 1986; Ullman, 1986; Huttenlocher and

Ullman, 1987) have been proposed for extending the alignment method to deal with natural

objects. The approach appears to offer some advantages, but it has been demonstrated so

far only in limited domains.

It must be concluded that in object recognition, which is one of the most fundamental

aspects of human vision, theories (as well as experimental work) still have a long way to go.

Some combination of an alignment process with part decomposition may offer a promising
starting point, but these techniques must be extended and generalized considerably before

they will be able to cope successfully with common objects that are recognized efficiently
by the human visual system.
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